同轴电缆技术参数(一)

新闻资讯 老翟笔记小编 2024-03-05 10:50:29 51 0

老翟笔记今日分享的是:同轴电缆技术参数(一)

一、工程常用同轴电缆类型及性能: 1.SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”;  2.SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”; 3.基本性能:  (1)SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占70-80%的物理发泡聚乙烯绝缘电缆;  (2)由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。厂家给出的测试数据也说明了这一点; (3)同轴电缆都可以在直流、射频、微波波段应用。 按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些; (4)高编(128)与低编(64)电缆特性的区别:据实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。 二、了解同轴电缆的视频传输特性——“衰减频率特性” 同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;实验室对典型的SYWV75-5、7/64编电缆进行了研究测试:  1.电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传输效果与75-5电缆600多米电缆传输效果大致相当;  2.电缆越长,衰减越大:如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比关系计算”,就可以灵活运用了;  3.频率失真特性:低频衰减少,高频衰减大。高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种 “频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题; 三、工程应用设计要点  1.视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。视频图像信号是由0-6M不同频率分量组成的。低频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。“恢复”不可能是100%,而是允许有一个“失真度”范围要求的标准。这个“标准”的“失真度范围”,在图像上用肉眼应该是分辨不出来的。反过来说,如果在图像上已经能够观察出一点“失真”了,那不管你主观认为图像“还行,可以,不错”甚至“双方认可验收”等等,这时的视频传输质量,都是“不合格的”。要把工程图像做好,首先就应该选择合格的传输设备,追求视频传输质量符合标准。 2.“视频传输”标准: 对于视频传输,我国广播级视频失真度标准要求:5M以下幅频特性误差范围为±0.75db, 即91.7—109%;6M频点为70.7—109%;监控行业的要求略低一些,,0—6M全范围为±1.5db,即84—118.8%;这个传输频率特性要求,与一般“3db通频带”的概念一样;这里须强调:要保证图像质量,视频传输系统(产品)的频率失真范围应小于3db;“3db带宽”这个标准,适用于光缆、射频、微波、同轴和双绞线等各种视频传输系统产品;这是为了保证图像质量,对视频传输系统的要求。 3.摄像机信号不加放大补偿,只用同轴电缆传输时,按照“3db带宽”这个标准要求,并结合上面的电缆衰减特性,75-5电缆,不超过3db失真度的电缆长度计算方法是:1000米20db,20/3=6.67,1000/6.67=150米,75-7电缆为236米。不同厂家不同批次的电缆特性有一定差别,实际工程设计中,参照这个数据设计和施工,图像质量一般会有保证的。(准确计算应按照“边频差值”计算,上面计算忽略了低频衰减); 4.实心聚乙烯绝缘电缆,衰减量大于物理发泡电缆。所以3db带宽有效传输距离少于上面计算值,工程上大致可按90%左右估算。如实芯75-5电缆“3db带宽”传输距离大约为150*0.9=135米;  5.高编电缆:尽管200k以下的衰减小于低编电缆,但200-300k以上的传输衰减与低编电缆一样,所以3db带宽传输距离,反而低于上述计算值,这是由于高编电缆的“边频差值”更大的因素造成的,“边频差值”越大,放大补偿的难度越大; 6.同轴电缆加放大补偿的视频传输方式:这时系统传输特性是同轴电缆的衰减频率特性和放大补偿的“增益频率特性”之和,放大补偿的“增益频率特性”,应该能有效补偿电缆的频率衰减特性,且二者应该始终保持相反、互补关系,这才可以有效扩展同轴电缆的传输距离。目前这项同轴视频传输技术,产品已经达到的技术水平是:只用一级末端补偿(无前端无中继),75-5电缆在2km,75-7电缆在3km范围以内的任意距离上,都可以实现上述传输标准;传输距离和传输质量已经和多模光端机相当,而在传输成本、施工维护和图像质量可控恢复功能方面,都具有独特的实用优势和竞争优势;这就是说,同轴视频传输技术,以将有效监控范围扩展到了2-3公里,且是我国自有知识产权技术。  四、同轴电缆的抗干扰性能 [工程经验]:一路本来没有干扰的图像,运行中偶然出现了干扰,经检查是BNC电缆头接地不良引起的。重新焊好后,干扰消失了,图像恢复正常。  这说明什么问题呢? 一是说明周围环境确有外界电磁干扰存在, 二是说明在正常情况下,同轴电缆可以把这类干扰屏蔽掉, 三是说明BNC电缆头接地不良,破坏了电缆的屏蔽性能,使原来已经被屏蔽掉的干扰,在新的条件下又显现出来了。 这就是我们探讨干扰产生原理的启发点。对于干扰的探讨,实验室的研究成果表明:  1.同轴干扰形成原理:就像天线接收电磁波原理一样,电缆外部客观存在的交变电磁场,可以在电缆外导体上产生干扰感应电流——干扰感应电流在电缆“纵向电阻(阻抗)”Rd上,会形成干扰感应电动势(电压)Vi——干扰感应电动势刚好串联在视频信号传输回路里,与视频信号一起加到末端负载Rh上,形成了干扰。  2.当电缆外导体电阻很小,或当外界电磁干扰不是很强,感应电流很小,感应电动势也就很小,而且远远小于视频信号,这时就可以认为“没有干扰”。这就是同轴电缆屏蔽干扰的作用;  3.在上面工程经验中,当接头没有焊接好、接触不良、编织层在穿管时被拉断、或在电梯随行电缆中,长时间反复弯曲加上垂直重力作用编织层被逐步拉断时,都会造成外导体电阻增加,导致“干扰感应电压”升高,视频信号传输效率(分压比例)降低,使原来没有显现出来的“干扰”也出现了;  4.工程中的“地电位”干扰也是通过同轴电缆外导体电阻才起作用的,所以单端接地可有效排除; 5.四屏蔽高编(128)电缆外导体电阻比低编电缆小,所以形成的干扰感应电动势也要低一些,这种“低一些”的效果,只是对低频干扰而言的(欧姆电阻为主)。对于高频干扰,由于趋肤效应,高、低编电缆的表面阻抗基本一样,所以对高频的抗干扰效果区别不大。

本文结束,感谢您的阅读和支持,希望以上内容能给你带来帮助。本文章来自网络,由老翟笔记小编团队整理发布。

  • 随机文章
  • 热门文章
  • 热评文章

评论区